Python Language Tutorials

List of topics which are covered in this learning:

These topics cover a wide range of Python knowledge and should help you prepare for job interviews in various domains, whether it’s web development, data analysis, machine learning, or other areas where Python is commonly used. Tailor your focus based on the specific requirements of the job you’re applying for.

  1. Installing Python
  2. Basic Syntax and Data Types
  3. Variables and Constants
  4. Numeric Types (int, float)
  5. Strings and String Manipulation
  6. Lists
  7. Tuples
  8. Dictionaries
  9. Sets
  10. Booleans
  11. Basic Input and Output
  12. Type Conversion
  13. Control Structures (if, elif, else, while, for)
  14. Conditional Expressions (ternary operator)
  15. Functions
  16. Function Arguments
  17. Return Values
  18. Variable Scope
  19. Lambda Functions
  20. Recursion
  21. Object-Oriented Programming (OOP)
  22. Classes and Objects
  23. Constructors and Destructors
  24. Inheritance
  25. Method Overriding
  26. Encapsulation
  27. Abstraction
  28. Polymorphism
  29. Multiple Inheritance
  30. Exception Handling (try, except, else, finally)
  31. Custom Exceptions
  32. File Handling
  33. Opening and Closing Files
  34. Reading and Writing Files
  35. Working with CSV and JSON
  36. File Paths and Directories
  37. Data Structures (stack, queue, linked list)
  38. List Comprehensions
  39. Dictionary Comprehensions
  40. Generators and Iterators
  41. Decorators
  42. Context Managers
  43. Recursion vs. Iteration
  44. Date and Time
  45. Regular Expressions (re module)
  46. Modules and Packages
  47. Importing Modules
  48. Creating Modules
  49. Built-in Modules (math, random, datetime, os, sys)
  50. sys.argv and Command-Line Arguments
  51. Virtual Environments
  52. Global Variables
  53. Constants in Python
  54. Magic Methods
  55. List vs. Set vs. Dict Comprehensions
  56. Python Garbage Collection
  57. Namespaces and Scope
  58. Closures
  59. First-Class Functions
  60. Functional Programming
  61. Map, Filter, and Reduce
  62. Anonymous Functions (lambda)
  63. Higher-Order Functions
  64. Itertools
  65. Multithreading vs. Multiprocessing
  66. Threading
  67. GIL (Global Interpreter Lock)
  68. Synchronization and Locks
  69. Multiprocessing
  70. Concurrent Futures
  71. Asynchronous Programming (async and await)
  72. Asyncio
  73. Coroutines
  74. Web Scraping with Beautiful Soup
  75. Web Scraping with Requests
  76. RESTful APIs
  77. HTTP Methods (GET, POST, PUT, DELETE)
  78. Cookies and Sessions
  79. Web Development (Flask, Django)
  80. Flask Basics (Routes, Templates, Forms)
  81. Django Basics (Models, Views, Templates)
  82. Database Access (SQL and NoSQL)
  83. SQLite
  84. SQLAlchemy
  85. ORM (Object-Relational Mapping)
  86. MySQL and PostgreSQL
  87. MongoDB
  88. Database Connectivity (SQLAlchemy, pymongo)
  89. Data Serialization (JSON, XML)
  90. Serialization Libraries (pickle, json)
  91. GUI Programming (Tkinter)
  92. Unit Testing (unittest, pytest)
  93. Test-Driven Development (TDD)
  94. Version Control (Git, GitHub, GitLab)
  95. Git Basics (commit, branch, merge)
  96. Git Collaboration (clone, pull, push)
  97. Git Branching and Merging
  98. Git Conflict Resolution
  99. Collaborative Coding
  100. Software Design Patterns
  101. Model-View-Controller (MVC)
  102. Singleton Pattern
  103. Factory Pattern
  104. Adapter Pattern
  105. Decorator Pattern
  106. Observer Pattern
  107. Command Pattern
  108. Python 2 vs. Python 3
  109. Key Differences
  110. Migration Strategies
  111. Printing in Python (print function)
  112. Working with Directories (os and os.path)
  113. Environment Variables
  114. Unicode and Character Encoding
  115. PyPI (Python Package Index)
  116. Package Management (pip)
  117. Virtual Environments (virtualenv)
  118. Third-Party Libraries
  119. Debugging Techniques
  120. Profiling Python Code
  121. Memory Management
  122. Performance Optimization
  123. Code Documentation (docstrings)
  124. PEP 8 Style Guide
  125. Coding Standards
  126. Code Linting
  127. IDEs and Text Editors
  128. Jupyter Notebooks
  129. REPL (Read-Eval-Print Loop)
  130. Interactive Mode
  131. Data Analysis with Pandas
  132. NumPy for Numerical Computing
  133. Data Visualization (Matplotlib, Seaborn)
  134. Data Cleaning and Preprocessing
  135. Statistical Analysis
  136. Machine Learning Libraries (scikit-learn)
  137. Supervised Learning
  138. Unsupervised Learning
  139. Deep Learning (TensorFlow, PyTorch)
  140. Neural Networks
  141. Convolutional Neural Networks (CNN)
  142. Recurrent Neural Networks (RNN)
  143. Natural Language Processing (NLP)
  144. Sentiment Analysis
  145. Computer Vision
  146. Image Processing
  147. Reinforcement Learning
  148. Data Science Tools (Jupyter, Anaconda)
  149. Big Data Processing (PySpark)
  150. Data Warehousing (Snowflake, Redshift)
  151. Data Analysis with SQL (SQLite, SQLAlchemy)
  152. Data Visualization with Plotly
  153. Web Development with Flask
  154. RESTful API Design
  155. JavaScript Integration (JSON, AJAX)
  156. Full-Stack Development
  157. DevOps (Docker, Kubernetes)
  158. Continuous Integration/Continuous Deployment (CI/CD)
  159. Cloud Services (AWS, Azure, Google Cloud)
  160. Serverless Computing (AWS Lambda)
  161. Microservices Architecture
  162. Scalability and Load Balancing
  163. SQL Injection Prevention
  164. Cross-Site Scripting (XSS) Prevention
  165. Web Security Best Practices
  166. Secure Password Hashing
  167. Cryptography with Python
  168. Hash Functions (md5, sha)
  169. Symmetric Encryption
  170. Asymmetric Encryption
  171. Public and Private Keys
  172. SSL/TLS Encryption
  173. Networking (socket programming)
  174. Creating a Socket Server
  175. Creating a Socket Client
  176. Protocols (HTTP, FTP, SMTP)
  177. API Authentication (OAuth, JWT)
  178. REST API Testing (Postman)
  179. Serialization Formats (XML, JSON)
  180. Concurrency Control
  181. Mutexes and Semaphores
  182. Deadlocks
  183. Thread Safety
  184. Parallel Programming
  185. Data Structures (Heap, Priority Queue)
  186. Data Compression
  187. Algorithms (Sorting, Searching)
  188. Sorting Algorithms (QuickSort, MergeSort)
  189. Searching Algorithms (Binary Search)
  190. Big O Notation
  191. Data Analysis Libraries (Pandas, NumPy)
  192. Machine Learning Algorithms
  193. Neural Network Architectures
  194. Hyperparameter Tuning
  195. Model Evaluation and Metrics
  196. Clustering Algorithms
  197. Image Recognition
  198. Object Detection
  199. Generative Adversarial Networks (GANs)
  200. Reinforcement Learning Algorithms
  201. Time Series Analysis
  202. Data Engineering
  203. ETL (Extract, Transform, Load)
  204. Data Warehousing (AWS Redshift, Google BigQuery)
  205. Data Visualization (Tableau, Power BI)
  206. Web Development Frameworks (Django, Ruby on Rails)
  207. GraphQL
  208. Authentication and Authorization
  209. Cross-Origin Resource Sharing (CORS)
  210. Serverless Architecture (AWS Lambda)
  211. Containerization (Docker)
  212. Orchestration (Kubernetes)
  213. Infrastructure as Code (Terraform, Ansible)
  214. IoT (Internet of Things)
  215. DevOps Best Practices
  216. Site Reliability Engineering (SRE)
  217. Agile and Scrum Methodologies
  218. Project Management
  219. Problem Solving and Algorithmic Thinking
  220. Coding Challenges and LeetCode
  221. System Design Interviews
  222. Behavioral Interviews
  223. Soft Skills for Software Engineers